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ENHANCED ACCURACY BY POST-PROCESSING FOR FINITE ELEMENT
METHODS FOR HYPERBOLIC EQUATIONS

BERNARDO COCKBURN*, MITCHELL LUSKIN', CHI-WANG SHU¥, AND ENDRE SULI}

Abstract. We consider the enhancement of accuracy, by means of a simple post-processing technique,
for finite element approximations to transient hyperbolic equations. The post-processing is a convolution
with a kernel whose support has measure of order one in the case of arbitrary unstructured meshes; if the
mesh is locally translation invariant, the support of the kernel is a cube whose edges are of size of the order
of the mesh size only. For example, when polynomials of degree k are used in the discontinuous Galerkin
(DG) method, and the exact solution is globally smooth, the DG method is of order k +1/2 in the L? norm,
whereas the post-processed approximation is of order 2k + 1; if the exact solution is in L? only, in which case
no order of convergence is available for the DG method, the post-processed approximation converges with
order k + 1/2 in L? over a subdomain on which the exact solution is smooth. Numerical results displaying

the sharpness of the estimates are presented.
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1. Introduction. In this paper, we consider general finite element methods for time-dependent linear

hyperbolic systems of the form

d

up+ Y Ajug; + Agu =0, (z,t) € R? x (0,77,
j=1

u(z,0) = up(z), z € R,

where {Aj}?zl are real, constant coefficient m x m matrices such that E?Zl A;&; has real eigenvalues and
a complete set of linearly independent eigenvectors for all ¢ € R?, and the function » has range in R™.
Our aim in this paper is to show how to exploit the inherently oscillatory nature of numerical solutions to
this problem computed by means of finite element methods to enhance the quality of the approximation.
This enhancement is achieved by post-processing the approximate solution only once, at the very end of
the computation, at ¢ = T. The post-processing considered here is completely independent of the partial
differential equation under consideration and can be performed for entirely arbitrary triangulations; however,
it takes a particularly simple and computationally efficient form when the triangulation is locally translation

mnvariant.
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To illustrate the basic idea, let us consider the following simple model problem:
ug+u, =0, in (0,1) x (0,7), u(z,0) = sin(2rx) for z € (0,1),

subject to periodic boundary conditions, and let us compute an approximation U to its solution u by using
the discontinuous Galerkin (DG) method with piecewise polynomials of degree one over uniform grids of
spacing h. We also consider the post-processed approximation U* = K 2’2 * U, where the convolution kernel
K;?(x) = +K*2(z/h) is defined by

1 7 1
K (y) = —ET/)(Q) (y—1)+ 61/1(2) (y) — E%ZJ@) (y+1),

where 1(?) is the B-spline obtained by convolving the characteristic function ") = x of the interval
(—=1/2,1/2) with itself once. In Fig. 1.1 we display, for 7" = 0.1 and h = 1/10 and h = 1/20, the er-
rors ¢ — u(T,z) — U(T,x) and z — u(T,z) — U*(T,x). The time-step was chosen so small that the overall
accuracy of the method is dominated by the spatial error. We note the oscillatory nature of the error
x = u(T,z) —U(T,x) typical of finite element methods and the apparent superconvergence of the numerical
solution at the two Gauss-Radau points, a fact discovered in 1995 by Adjerid, Aiffa, and Flaherty [2]; see
also their recent work [1]. In contrast with this behavior, we observe the complete absence of oscillations
from the error u(T) — U*(T'). This shows that convolving the approximate solution U with the kernel K;‘;’z
filters out the numerical oscillations around the exact solution. Moreover, the result of such a filtering is
a new approximation U* that converges faster to v than U. Indeed, in Fig. 1.2, we display the functions
x> log(|u(T,z) —U(T,z)|), for h=1/10,1/20,1/40 and 1/80; we observe that each time h is halved, the
maximum of z — |u(T,z) — U*(T,z)| is divided by a factor not less than eight. This indicates that the
post-processed approximation is at least third-order convergent; the original approximate solution U exhibits
only second-order convergence.

In Figs. 1.3 and 1.4 we repeat the above experiment using polynomials of degree two. Again we observe
the oscillatory nature of the approximation and the superconvergence at the three Gauss-Radau points in
Fig. 1.3 (top), and that the oscillations are filtered out upon convolution in Fig. 1.3 (bottom). This time,
the convolution kernel K;**(z) = £ K3(z/h) is defined by

37 97 437
6,3 () — Dy —9)_ Wy 1) — (4)
E™(Y) =1950Y W2~ ¥ 0~ — 555¥ " )
97 37
A WACO) EANACY
1s0? WA D+ 1o5? T (0 +2),
where 1*) is the B-spline obtained by convolving the characteristic function (') = x of the interval

(=1/2,1/2) with itself three times. In Fig. 1.4, we see that each time h is halved, the maximum error
decreases by a factor not less than thirty two. This shows that the error in the post-processed approxima-
tion is of fifth order.

In connection with this fact, we note here that in 1996 Lowrie [16] found analytical and numerical evidence
that when polynomials of degree k are used, a ‘component of the error’ of the DG method converges with
order 2k + 1 in the L? norm; this fact stands in striking contrast with convergence of order k + 1/2 for
the underlying DG approximation (k + 1 for the one-dimensional case and special grids in several space
dimensions). In this paper, we provide a firm mathematical basis for this observation, and show how to
compute the superconvergent approximation U* by a simple post-processing technique which is independent

of the equation and of the numerical method.
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Fi1G. 1.1. The errors uw — U (solid line) and w — U* (dots) at T = 0.1 for h = 1/10 (top) and h = 1/20 (bottom). The
function u is the smooth exact solution, U is the approzimation given by the DG method with polynomials of degree one, and
Ur =K} *U.

Fi1G. 1.2. The errors log(|]u—U*|) at T = 0.1 for h =1/10 (top), h =1/20, h = 1/40, and h = 1/80 (bottom). Each time
h is halved, the mazimum error decreases by a factor not less that 8; the order of convergence is, therefore, not less than 3.

The paper is organized as follows. In Section 2, we present a brief account of the development of the ideas
behind this paper. In Section 3, we state and discuss our main theoretical results, and in Section 4 we present
their proofs. In Section 5, we display numerical experiments which not only verify our theoretical results but
also indicate how this kind of post-processing can be applied to convection-diffusion and non-linear problems.

We conclude, in Section 6, with some remarks.

2. A brief overview of the development of post-processing techniques. In order to introduce

the basic ideas of our work and to put them into proper perspective, we briefly review the development of



F1G. 1.3. The errors uw — U (solid line) and w — U* (dots) at T = 0.1 for h = 1/10 (top) and h = 1/20 (bottom). The
function u is the smooth ezact solution, U is the approzimation given by the DG method with polynomials of degree two, and
Ur =K *U.
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Fi1G. 1.4. The errors log(|u—U*|) at T = 0.1 for h =1/10 (top), h =1/20, h = 1/40, and h = 1/80 (bottom). Each time
h is halved, the mazimum error decreases by a factor not less that 32; the order of convergence is, therefore, not less than 5.

post-processing techniques devised to improve the quality of numerical approximations. For further details,
the reader should consult the monograph of Wahlbin [21] on superconvergence in Galerkin finite element

methods.

2.1. Finite difference and spectral methods for hyperbolic problems. In 1977, Majda and
Osher [18] considered formally high-order accurate dissipative difference schemes for hyperbolic problems.
They studied a one-dimensional model problem of a two-by-two hyperbolic system whose characteristics are

parallel to x = £t; the initial condition is a step function whose discontinuity is located at the origin. Majda



and Osher showed that the rate of convergence on the region between the characteristics issuing from the
origin, | x/t| < 1 — §?, is independent of the numerical scheme. They pointed out that in 1962 Fedorenko
[11] and in 1969 Apelkrans [3] displayed numerical evidence that the order of convergence had to be one.
However, by selecting a suitable approximation of the initial datum, Majda and Osher showed that the order
of convergence can be increased to two. Moreover, they found that they could recover the full formal order
of accuracy of the scheme on the region |x/t| < 1 — §% provided they preprocessed the initial data in an
appropriate way. In 1986, Johnson and Pitkdranta [14] used a similar idea in the analysis of the DG method
for linear hyperbolic problems. The question of post-processing the initial data is considered in the book
of Brenner, Thomée and Wahlbin [5]; see also the work of Jovanovié¢, Ivanovi¢ and Siili [15] concerning the
use of convolution mollifiers with B-spline kernels for second-order hyperbolic boundary value problems with
non-smooth data.

In 1978, Mock and Lax [19] showed that for a difference scheme of any formal order of accuracy u, for
linear hyperbolic systems, the moments of the exact solution converge with order p provided that, again, the
initial data was suitably preprocessed. This result holds even if the exact solution contains discontinuities.
They also showed how to post-process the approximate solution by a simple convolution to enhance its
accuracy over regions of smoothness of the exact solution: if the solution was sufficiently smooth locally,
they could obtain nearly the full order of convergence u provided that the support of the kernel was of order
almost one. This seems to have been the first instance when the ideas of (i) preprocessing the initial data,
(ii) obtaining error estimates for the moments, and (iii) post-processing the approximation, appear clearly
delineated.

Later, in 1985, Gottlieb and Tadmor [12], motivated by the work of Mock and Lax [19], found a spectrally
accurate post-processing kernel for spectral methods; see also the 1978 paper by Majda, McDonough and
Osher [17]. Again, the full spectral accuracy could be recovered by using a convolution; the measure of the

support of the kernel had to be of order one.

2.2. Finite element methods for elliptic problems. Quite independently of the developments
reviewed above, in 1977 Bramble and Schatz [4] considered linear elliptic problems and showed how to
post-process the finite element solution by means of a simple convolution to enhance the quality of the
approximation. They showed that the order of convergence could be doubled if the exact solution was
locally smooth. It is important to point out that, just like Mock and Lax, Bramble and Schatz proved a
negative-order norm error estimate (an error estimate of the moments in Mock and Lax’s terminology) and
then showed how to use it to enhance the approximation by a convolution. However, unlike Mock and Lax’s
convolution kernel, for locally translation invariant grids the Bramble—Schatz kernel has support in a cube
whose diameter is of order h only; this fact represents a considerable advantage from the computational
point of view.

Also in 1977, Thomée [20] extended the work of Bramble and Schatz [4] to include superconvergence of
the derivatives and gave an elegant proof of their approximation results by using Fourier analysis.

An application of the Bramble and Schatz technique to the simulation of miscible displacement was
devised and analyzed by Douglas [9]; other applications can be found in the book of Wahlbin [21].

2.3. The main ideas. In this paper, we apply the ideas of Mock and Lax [19] and Bramble and Schatz
[4] to enhance the accuracy of finite element approximations to hyperbolic problems by post-processing.
We proceed as follows. First, we obtain an estimate of the error between the analytical solution u and the
post-processed numerical approximation U in terms of negative-order Sobolev norms of u — U. This result

does not depend on the partial differential equation under consideration or on the numerical scheme. Next,



we obtain negative-order norm a priori estimates for the error between the exact solution of a hyperbolic
problem and its finite element approximation U. The final error estimate is then obtained by combining the
above bounds.

3. The results. In this section, we present and discuss our main theoretical results.

3.1. An approximation result. We begin by presenting a result that relates negative-order norm a
priori estimates of the difference between u and an arbitrary approximation U for u to L2-error estimates of
the difference between u and the post-processed counterpart U.

Let us recall the definition of a negative-order Sobolev norm on an open set  C R¢. We denote by
|l u o, the standard L?-norm of u on . For any natural number £, we consider the norm and seminorm of
the Sobolev space H(Q), defined by

1/2 1/2
IIUIILQZ{ZIID“UH%,@} , |u|z,9={2||Dau||%,Q} .

la| <t lo|=¢

Sobolev norms and seminorms for vector-valued functions from H’({2, R™) are defined analogously and are

denoted by the same symbol as in the scalar case. We then define the negative order Sobolev norm || - ||—¢,q,
{>1, by
u(z) ¢(z) dz
lula= sup dot@ORdT
sece@) | dllen

Negative-order norms can be used to detect the oscillations of a function around zero. For example, for
Q= (-1,1), £> 1 and uy(z) = sin(2r N ), a simple computation gives || un ||—r,0 = 1/(27 N)¢, indicating
that u oscillates about zero in a very regular manner.

Next, we describe the type of post-processing to be considered following Bramble and Schatz [4]. We
post-process the approximate solution by convolving it with a kernel K%‘(z) = K*(x/H)/H? which has to
satisfy three properties; the first of these is that K*¢ has compact support. The second is that it reproduces

polynomials p of degree v — 1 by convolution, that is,
K" %p=np.

This is the type of kernel used by Mock and Lax [19]. The kernels used by Bramble and Schatz [4] which
we shall next describe have the further property that they are linear combinations of B-splines. Let x be
the characteristic function of the interval (—1/2,1/2) and let § denote the Dirac distribution concentrated
at © = 0. Then, we define recursively the functions 1)(*) as follows:

@ =5, " =™ sy, forn >0,
and, given an arbitrary multi-index o = (a,...,aq) and y = (y1,...,yq) € R?, we set
D (y) = ) (1) . D (ya).

We also set 1 = (1,...,1). The third, and final, property of the kernels considered here is that they are of
the form

K" y) = > kM (y — ), (3.1)
YEZL



where k;’“ € R. Note that since the support of K1 has been assumed compact, there are only finitely
many non-zero coefficients k;’“ in this sum.

The imposition of these hypotheses is motivated by the following observations: the compactness of the
support of the convolution kernel is advantageous from the computational point of view; the second property
ensures that accuracy of order v is not destroyed by post-processing; the third property allows us to express

derivatives of the convolution with the kernel in terms of simple difference quotients. Indeed, it is very easy

to verify that for multi-indices a and 3 such that 8; > a; for i = 1,...,d, we have
DD x ) = 7 « 92, (3.2)

where zb;?) (z) = ple/H) /g,

1 1 1
O =0y ... 0y and  Omjv(z) = ﬁ(v(a: t3 Hej) —v(z — 3 Hej)).

This fact can then be exploited in the finite element framework, as will be seen later. We are now ready to
state an approximation result which shows that local smoothness of v on the one hand and negative-order
norm estimates of divided differences of the error u — U on the other lead to a local bound on u — K" x U
in the L?-norm.

THEOREM 3.1 (Bramble and Schatz[4]). Let v and £ be two natural numbers. Suppose, further, that
K;;Zl(a:) = K" (z/H)/H? where K¥ is a function of compact support which reproduces polynomials of
degree v —1 by convolution, and which is the linear combination of B-splines, as in (3.1). Let U be a function
in L?(Q), where Qy is an open set in R?, and let u be a function in H'(Qy). Let Qo be an open set in RY
such that Qo + 2supp(K;I’l1) CC Qy for oll H < Hy. Then, for H < Hy, we have

14 HV o
lu— K5 % Ulloo, < —r Clulve, +C1 0 > 0% (w=U) [|—e0.,

lof <€

where Cy = nyezd |k;"Zl | and Cy depends solely on Qo, O, d, v, and £.
To illustrate the importance of this result, let us assume that there exist real numbers p > 0 and a € [0, ¢
such that, for all H < H,

> 1105 (w—TU) ||—e0, < C3h* H™. (3.3)
la| <t
Note that the number a measures how well it is possible to estimate the negative-order norm of the divided
differences of u — U. In the worst case, a = ¢; this is the case treated by Mock and Lax [19]. In the finite
element framework, however, it is possible to take a to be different from ¢, as Bramble and Schatz [4] showed
for second-order elliptic problems.
Inserting the inequality (3.3) in the inequality of Theorem 3.1, we get

HV
701 |ul|yq, +C1CoCsh* H™®

lu = K33 5 Ullo.a, <
< Crmax{|ulyo,/v!,CoCs} (HY + h* H™?).
If we now define H to be the solution of the equation HY = h* H~ %, we obtain the following result.

COROLLARY 3.2. Let the hypotheses of Theorem 3.1 hold, and suppose that (3.3) is valid. Then, for
H = h#/v+9) < Hy we have

¥
lu— K5 % U lloa, < Ch*,



where C' =2 Cymax{|u|,.q,/V!,C2C3} and 0 = v/(v + a).
Note that in the worst possible case, that is when a = ¢, this implies that

¥
lu— K5 % U flo, < C RO,

with § = v/(v + £) < 1. The only possibility we then have for raising the order of convergence is to hope
that the function w is very smooth so that we can choose v large and positive. Unfortunately, even if this
were actually possible, the support of the convolution kernel would be contained in a cube whose diameter
is of order H = h*/(*+9 which converges to a quantity of order one as v increases to infinity; this in turn
renders the evaluation of the convolution computationally inefficient.

On the other hand, in the best possible case (that is when a = 0), taking v = p would permit choosing
9 =1, H = h and we would then have

lu— K2 % U o, < CR*.

In other words, for a = 0 we obtain the same order of convergence for u — K;I’“ % U in the local L? norm
as that of the local negative-order norm error estimate in (3.3). Moreover, this is achieved by using a
convolution kernel whose support is contained in a cube whose diameter is of the order H=nh only; this
renders the evaluation of the convolution a very fast computation. The examples shown in the Introduction

correspond to this case with v = p = 2k + 1, where k is the degree of polynomials in the discontinuous
Galerkin method.

3.2. Negative-order norm error estimates for finite element methods.

3.2.1. The weak solution. As stated in the Introduction, we consider the following Cauchy problem:

d
ug + Z Ajug; + Agu =0, (z,t) € R? x (0,7, (3.4)
j=1
u(z,0) = up(z), z €R?, (3.5)

To make the presentation of the ideas as simple as possible, we reduce unessential technicalities by
assuming that the matrices in the equation (3.4) are independent of time and space and by taking the initial
data to be 1-periodic in each of the coordinate directions z;, i = 1,...,d, and we seek a solution to the above
problem which is 1-periodic in each coordinate direction.

We suppose that the system of equations (3.4) is strongly hyperbolic, that is, there exists a family of
real m x m matrices {S(£) : € € R?} and a constant K > 0 such that

d
SEO(D_4i6)571(©)

is a diagonal matrix for all £ € R?, and

sup (NS@I+11S©1) < K. (3.6)

Letting I = (0,1)%, the weak solution, u(z,t), of (3.4) satisfies

t d
(u,0)1() = (0, 0(0))1 + / (0 + 3" Al — Afp)r dr (3.7)
0

j=1



for all ¢ € C([0,T]; Hy,(R?, R™)) and ¢ € [0, T] where A3 is the transpose of A; and in the above equation
and below
(w)i(®) = [ ule, (.0 de.
I
Here, H}. (R?,R™) denotes the Sobolev space of 1-periodic functions defined as follows. Let C5e.(R?,R™) be
the subset of C>°(R?,R™) of 1-periodic functions. We then define H}  (R?,R™) as the closure of €33, (R?,R™)
for the H' (I, R™)-norm.

It follows from (3.6) that the problem (3.7) is well posed in
L2 (RYGR™) = {f € LY (RYR™) : f(z+ @) = f(z) forall z € RY, a € Z7}

per

with respect to the norm || - ||z>(1); see Theorem 6.3.2. on p. 219 of [13].

3.2.2. The finite element methods. Next, we describe the class of finite element approximations
o (3.4). It includes the standard Galerkin method, the Galerkin method with artificial diffusion and the
discontinuous Galerkin method. With slight modifications we could have easily included, for example, the
streamline diffusion method and the stabilized discontinuous Galerkin method; however, in order to avoid
unnecessary technical complications, we have chosen not to consider these.

Let 75, = { K } be a regular triangulation of R?, invariant under translations by a € Z% whose elements
K are open and have diameter hg less than or equal to h. It will be assumed throughout that each K € T,
is contained either in I or in R? \ I. For a nonnegative integer k, we associate with the triangulation 7, the

broken Sobolev space

HE o REGR™) = Hger, HY(KGR™) N L2 (R R™).

per

For k = 0, we shall write L2 . ,(R:;R™) = HY, ., (RY;R™). We then consider two finite element sub-

per,h
spaces My, and Ny, of H ., (RY; R™), and the broken Ly inner product (-,-)s defined on L2, (R*; R™) x
le)er h(Rd ) Rm) by
Woxon =Y, WXk, (3.8)
KeTnr
where T, ={K €T : K CI}.
We define the finite element approximation U : [0,T] — M}, as the solution to
Ue(t),x)n + BU(t),x) =0,  x €Ny, (3.9)
U(0) = Py uo, (3.10)
where B(-,) is a bilinear form defined on M}, x H;er’h(]Rd;]Rm), and the operator Py, : L?,.(RY; R™) — M,

is the orthogonal projection in the norm of L*(I).

In Table 3.1, we describe different choices of the form B that give rise to different finite element methods;
in each of these M} = N, although this need not be the case in general.

The operator A and the bilinear form (-, -);, that appear in Table 3.1 are defined as follows:

d
X = ZAijj + Aox,
j=1
A*x ZA*Xz] + Ay,
(AU, x)n Z Z
KeTh,1 ecOK



TABLE 3.1
Ezxamples of finite element methods.

Method | My ce | B(U,n)
Standard Galerkin (SG) yes (AU,n)1
SG with artificial diffusion yes (AU, m)r + b (VU, V)1, v > 1,
Discontinuous Galerkin no (U, A*n)p + (AU, n)p,
where A-n=A1n; +---+ Agng, n = (n1,...,n,) is the unit outward normal vector to K on e C 0K, and

U is the numerical flux of the DG method defined as follows. Given an element K and a face e € K , let us
denote by K. € 7 the element sharing the edge e with K and denote by Ux and Uk, the traces of U on e
from K and K., respectively. We compute the m x m diagonal matrix diag(\;,...,Am) = S(n) (A-n) S~1(n)
and set V = S71(n) U and

I7 _ (VK)]' if A; >0,
’ (Vk.); otherwise .
The numerical flux is defined as follows:
U=58mn)V. (3.11)

3.2.3. The negative-order error estimate. We now give sufficient conditions for the finite element
method which ensure that, for a given time T', our approximate solution, U(T"), converges with high order
in a negative-order norm over a given subdomain Qy CC I to the weak solution u(T"). Given that [ > 0, we

wish to estimate

w(T) — U(T),
V() = U@y = sup D =UT)2)
PECE () || ¢ ||£,Qo

We begin by considering the solution to the dual problem: Find a function ¢ such that (-, t) is 1-periodic

in each coordinate direction for all ¢t € [0,7) and
d
ity Alps, — A5 =0, in R? x (0,7, (3.12)
j=1
o(z,T) = ®(z), r€RY, (3.13)
where ® is an arbitrary function in C§° ().

(u(T) = U(T), @) = (u,9)(T) — (U, p)(T)

T
= (10, 9(0) = U0 + [ F U0 dr

T
= (up — Py ug, ¢(0)) —/0 {U, ) + (U, 1) } dr.

10



Since, by (3.9), for x : [0,T] = N,

T
/ Uta / Uta@ X dT+/ (Ut:X)dT
0 0
T
=/ (Ui o — ) dT—/ B(U, x) dr
0

/ (U, 0 —X) + B(U,p — x}dT—/ B(U, p)dr,

we obtain that
(u(T) -U(T),®) = Om +ON + Oc, (3.14)
where

GM = (UO - Ph 'U/O,(P(O)),

T
On :_/0 {(U, 0= x) + BU,¢ — x)} dr,

T
_/0 {(Uﬁpt) —B(Ua<P)}dT-

Next, we introduce some general assumptions on M and A}, which will enable us to estimate these three
terms.

Let Qo cC Q C I, r >0, £ > 1, and suppose that ug € L?
denotes the domain of dependence for the set €;; see Fig. 3.1.

(RY; R™) N H"(DQy; R™), where DS

per

DQ

Fi1G. 3.1. Ezample of the domain of smoothness of u(T), Qo, and of a domain Q1 DD Qo and its corresponding domain
of dependence DS2; .

We adopt the following hypotheses.
(i) Approximation properties of M;, and P},. There exist constants pas, sar, with 0 < ppr < £ and
0 < sy <, and Ay such that, for each function ® in C§° (),

|(wo — Pruo, p(0)] < Anr B (g ||, ey | @ [l are,

11



where ¢ is the solution to the dual problem (3.12), (3.13) with the initial data ® for the dual problem.
(ii) Residual. Given that U is the solution to (3.9), (3.10), there exist constants pn, sy, with 0 < pny <

¢and 0 < sy < r, and Ay, such that for each function ® in C§°(Qp) there exists x € C1([0,T]; %)
with

T
‘ / (Ut,so—x>h+B<U,so—x>dt‘SAN RSN (g loipns [ @ [z,
0

where ¢ is the solution to the dual problem (3.12), (3.13) with the initial data ® for the dual problem.
(iii) Consistency. Given that U is the solution to (3.9), (3.10), there exist constants s¢ € (0, co0] and
Ao € ]0,00) such that

T
‘ / <U,<,at>h—B(U,so>dt‘ < A 1% [[uo |noss || % e,
1]

where ¢ is the solution to the dual problem (3.12), (3.13) with the data ® for the dual problem.
The next result is a trivial consequence of the decomposition (3.14) and conditions (i) — (iii).
THEOREM 3.3. Suppose that ug € L%eT(Rd;]Rm)ﬁHT(DQU]Rm), with Q9 CC Qy C I, r > 0, and assume
that conditions (1) — (iii) hold. Then, for £ > 1, we have

| (w = UYT) || —e0 < Ca b || o [lrpes

where s = min{pyr + sy, PN + SN, sc} and Cy = Ay + Ay + Ac.
In Table 3.2 we display the parameters of the above result for some finite element methods; for each of
the methods listed we have M;, = A}, and have assumed that Q; = I (so that Dy = T also).

TABLE 3.2

The parameters of Theorem 3.3 for finite element methods using piecewise polynomials of degree k.

parameter ‘ SG SG with AD DG
PM min{k +1,¢} min{k+1,¢} min{k+1,¢}
Sm min{k + 1,7} min{k+ 1,7} min{k+1,r}
PN min{k, £} min{k, £} min{k + 1/2, ¢}
SN min{k,r} min{k,r} min{k + 1/2,r}
sc 00 vy 00

3.3. The error estimates. Now we combine the results obtained in the previous subsections.
THEOREM 3.4. Let u be the exact solution of problem (3.4), (3.5); and let U be the approzimation defined
by (3.9), (3.10) for which conditions (i) — (iii) are valid. Consider the convolution kernel K%'* of Theorem

fH
3.1. Let each of the components of uw(T) be in H” (1) and let Qg be such that Qo + QSupp(K;I’ﬂ) CC .

Then, for general reqular triangulations and H = ps/(v+0) < Hy, we have

lu(T) = K% U(T) g, < C R,

where 8, s and C' are as in Theorem 3.3 with Cs = C4 || wo||r 0o, and 6 =v/(v + ).

Moreover, if the triangulation is translation invariant on a neighborhood of the support of the solution
of the adjoint equation (3.12), (3.13) then, for H=h,

lu(T) = K% < U(T) [lo.0, < C 17,
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Cs = Cy || wol|r+e,00; -

Proof. The first inequality is a direct consequence of Corollary 3.2 and Theorem 3.3. The second
inequality also follows from the above results and from the fact that if the triangulation is translation
invariant in a neighborhood (of order H= h) of the support of the solution of the adjoint problem, then we

have
105 (u = U)T) [l -0 < Ca 1| 80 [l Do -

This completes the proof. O

Some important particular cases for which Q; = I (and consequently Dy = I) are collected in the table
below; these are in fact the estimates we can actually prove. The case in which Q; # I remains a challenging
open problem.

TABLE 3.3

Orders of convergence with piecewise polynomials of degree k when the analytical solution u is in C([0,T1; H}.,.(I)).

triangulations ‘ v ‘ SG  SG with AD DG
general 0 0k fa 0(k+1/2)
general 2k+2 | 0k xes 0(k+1/2)
locally invariant 0 k a k+1/2
locally invariant | 2k +2 | 2k «a 2k+1

4. Proofs.

4.1. The approximation result. In this subsection, for the sake of completeness, we sketch the proof
of Theorem 3.1 following Bramble and Schatz [4].
Consider the following quantity:

Op = ||u- K;iﬂ *U oo <Omi+ Oz,
where
O = |lu— K" xullogo,
Oy = | K" % (u=U) flo,00-

To estimate ©f,1, we denote the support of KW by T, we label the Taylor polynomial of degree v — 1 of
u around y by T"u(y, ), and we put R*u(y, ) = u(-) — T"u(y, ). We then easily deduce that

u(z) — K}}’ﬂ *u(r) = R uly,x) — / K" (2) R"u(y,x — H 2) dz,
7
by using the fact that the kernel KZI’“ reproduces polynomials of degree v — 1 by convolution. For y = «,

the above expression becomes
w(z) — K5 su(z) = —/ K" (2) R"u(z,z — H z) dz,
z
and we obtain

OH,1

)

IN

K" L ey sup || RV u(-,- — H 2) [lo,q
z€T
HY

T K" |pazy [ulvgoraz
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On applying the triangle inequality to the expression of K" given by (3.1), we get
IE gy < Y TR I C= ) lwe = Y 1R =0,
Y€EZd y€Z

since || ) %(- — y) |14y = 1. This implies that

HY HY
On, < T Cilulyooraz < T Cilulve,-

Now, let us sketch the procedure to estimate ©y, 2. Take a set 2, /5 such that, for all H < Hy,

Qo + supp(K;") C Q/2,
Q)0 + supp(K,';’l) c 0.
Then, setting e(z) = u(x) — U(z), we get
Omz = | K" xellog, < Co Y | DY(KE! %) ll-e.0y0)
|| <£

where C5 depends solely on Qq, Q4/,, d, v, and ¢, by Lemma 4.2 in Bramble and Schatz [4]. This is the
significant step that allows us to pass from the L2-norm to a negative-order Sobolev norm.

Next, we exploit the fact that the kernel K;I’ﬂ is a linear combination of B-splines given by (3.1); this
is the only place in this proof where properties of B-splines are used. Thus, by the property (3.2) we have
that

DK% we) = K4« 0%e,
where

KV,Zl;a(y) — Z k:,lldj(llfa)(y _ ,Y)
y€eZd

This implies that

Onp < Co Y 1Ky % 0fell-eg,, < Co Y IKFS pawall 0fe | —t.0,-

laf<t laf<t
Finally, since || K;I’ZI;D( ||L1(Rd) = || KVt ||L1(Rd) < Cl, we get
Ons < C1Co Y [10Fell—r0,-
la|<e

This completes the proof of Theorem 3.1.

4.2. The conditions (i)—(iii) for some finite element methods. In this subsection, we justify the
results displayed in Table 3.2.

a. The SG method. Let us begin by considering property (i). For the L?-projection, it is well known
that ppr = min{k + 1,¢} and that spr = min{k + 1,7} for regular triangulations. Next, let us consider
property (iii). A simple calculation shows that we can take A® = 0; this allows us to take sc = oc.

For property (ii), we proceed as follows:
T
0= [ {(Up -+ Bl -0} e
0

T
=/0 (U = w)e + AU —w), 0 — )} dt.

14



Taking x as the L2-projection of ¢, we get (ii) with py = min{k, ¢}, sy = min{k,r} and Q; = I.
b. The SG with artificial diffusion. For this method, we only have to focus on property (iii). We

have,

T T
o= / (U, o) — BU, )} dt = / W (YU, Vi) di

< WV VU llp2(o,1;82(p | Ve lln2 (0,702 (1)) -
This means that property (iii) is satisfied with s¢ = .

c. The DG method. For properties (i) and (iii), we proceed as in the two methods discussed above.

The verification of property (ii) requires a more delicate argument. For a function W whose components

are in H!,, (R";R™), we set [AW](z) = A-nTW*(z) + A-n~ W~ (z) for every € e, where W*(z) =
lim, o W(z — zn®) and n* is orthogonal to the face e of the element K at z. With this notation, we can
write that

T
o :/0 (U —x)n + BU, o — x)} dt

T
:/0 {(Ut + AU, ¢ = X)n +Z([[AU]],¢—x>e} dt,

ee&

where we obtained the last step after a simple integration by parts; by £ we denote the collection of faces e
of the elements K of the triangulation 7y, ;.
Now, taking x to be the L2-projection of ¢ onto My = N, we get,

@z/o {Z([[AU]],@—Xk}dt

ee&
T 1/2 T 1/2
S{/ le[[AU]lllﬁ,odt} {/ le@-xllg,odt} :
0 ec& 0 ec&

This implies that property (ii) is satisfied with sy = min{k + 1/2,¢} for regular triangulations. It remains
to obtain an estimate of the first term on the right; following Johnson and Pitkaranta [14] or Cockburn [6],

it is easy to prove that (iii) is satisfied with py = min{k +1/2,r} and Q; = I.

5. Numerical experiments. In this section, we validate our theoretical results with an emphasis on
the case in which the doubling of the order of convergence is achieved. We also explore the performance
of the post-processing technique in situations not predicted by our analysis; thus, we display the L*-errors
in all our experiments, including an example of a linear convection-diffusion equation and an example of a
non-linear convection equation.

We consider the discontinuous Galerkin method with polynomials of degree k (denoted by P*) and use
a third order Runge-Kutta method to discretize in time; the time step At is chosen small enough so that
spatial errors dominate. Results for P! to P* are shown.

The L error measures the maximum numerical error at the six Gaussian points in each element for all

elements. The L? error is computed by the six-point Gaussian rule in each element.

Example 5.1. A linear scalar convection equation with smooth solution on the domain I = [0, 27):

ur+u, =0, inlx(0,T); u(z,0) =sin(z) zel, (5.1)
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with periodic boundary conditions. The errors are computed at 7' = 12.5 which is about 2 periods in time.
In Table 5.1, we show the numerical errors for this problem. We can clearly see that both the L? and
L error for P* elements is of (k + 1)-th order before post-processing and of at least (2k + 1)-th order after

post-processing. This is consistent with our theoretical results.

TABLE 5.1
Ezample 5.1, ut + ugy = 0, smooth solution.

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L™ error | order | L? error ‘ order ‘ L*> error | order
pl
10 | 3.29E-02 — | 5.81E-02 — | 3.01E-02 — | 4.22E-02 —
20 | 5.63E-03 2.55 | 1.06E-02 2.45 | 3.84E-03 2.97 | 5.44E-03 2.96
40 | 1.16E-03 2.28 | 2.89E-03 1.88 | 4.79E-04 3.00 | 6.78E-04 3.01
80 | 2.72E-04 2.09 | 8.08E-04 1.84 | 5.97E-05 3.00 | 8.45E-05 3.00
160 | 6.68E-05 2.03 | 2.13E-04 1.93 | 7.45E-06 3.00 | 1.05E-05 3.00
320 | 1.66E-05 2.01 | 5.45E-05 1.96 | 9.30E-07 3.00 | 1.32E-06 3.00
p2
10 | 8.63E-04 — | 2.86E-03 — | 2.52E-04 — | 3.57E-04 —
20 | 1.07E-04 3.01 | 3.69E-04 2.95 | 5.96E-06 5.40 | 8.41E-06 5.41
40 | 1.34E-05 3.00 | 4.63E-05 3.00 | 1.53E-07 5.29 | 2.16E-07 5.28
80 | 1.67E-06 3.00 | 5.78E-06 3.00 | 4.22E-09 5.18 | 5.97E-09 5.18
160 | 2.09E-07 3.00 | 7.23E-07 3.00 | 1.27E-10 5.06 | 1.80E-10 5.06
p3
10 | 3.30E-05 — | 9.59E-05 — | 1.64E-05 — | 2.31E-05 —
20 | 2.06E-06 4.00 | 6.07E-06 3.98 | 7.07E-08 7.85 | 1.00E-07 7.85
40 | 1.29E-07 4.00 | 3.80E-07 4.00 | 2.91E-10 7.92 | 4.15E-10 7.91
50 | 5.29E-08 4.00 | 1.56E-07 4.00 | 5.03E-11 7.87 | 7.24E-11 7.83
pi
10 | 1.02E-06 — | 2.30E-06 — | 1.98E-06 — | 2.81E-06 —
20 | 3.21E-08 5.00 | 7.30E-08 4.98 | 2.20E-09 9.82 | 3.11E-09 9.82
30 | 4.23E-09 5.00 | 9.66E-09 4.99 | 4.34E-11 9.68 | 6.66E-11 9.48

In Fig. 5.1, we plot the errors of the numerical solution before and after post-processing for P2 and P3
with 20 elements. We can clearly see that the errors before post-processing are highly oscillatory, and the
post-processing gets rid of the oscillation in the error and greatly reduces its magnitude.

In Fig. 5.2, we plot the errors, in absolute value and in logarithmic scale, of the numerical solution
before and after post-processing for P2, with 10, 20, 40, 80, and 160 elements. We can clearly see that
the post-processed errors are less oscillatory and much smaller in magnitude, and approximately third and

fiftth order accuracy for the pre-processed and post-processed errors, respectively, measured by the spacing
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between the errors when the number of elements doubles.

P* with 20 elements, Error P* with 20 elements, Error

before post-processing (solid line) ; and after post-processing (dashed line) before post-processing (solid line) ; and after post-processing (dashed line)
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FI1G. 5.1. The errors before and after post-processing for 20 elements: P2 (left) and P2 (right).

P?, before post-processing P?, after post-processing

o wwmﬂ’a’w’.&m M‘“ ' ' ——
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N=160

FIG. 5.2. The errors in absolute value and in logarithmic scale, for P2 with N=10, 20, 40, 80, and 160 elements. Before
post-processing (left) and after post-processing (right).

Example 5.2. A linear scalar convection diffusion equation with smooth solution on the domain I = [0, 27):
Ut + Uy = Uy, inlx(0,T) u(z,0) =sin(z), =ze€l, (5.2)

with periodic boundary conditions. The errors are computed at T' = 2, using the local discontinuous Galerkin
method [8], with alternating left and right fluxes for v and the auxiliary variable ¢ which approximates u,
(formula (2.9) in [8]).

Although not proven in this paper, we expect the same accuracy result to hold for the post-processed
solution as in Example 5.1. In Table 5.2, we show the results for this problem. We can clearly see that the
L errors for P* elements are of (k 4 1)-th order before post-processing and of at least (2k + 1)-th order
after post-processing, both for the solution u and for the auxiliary variable ¢ which approximates u,. The

results for the L? errors are similar and are not shown to save space.

Example 5.3. The same linear scalar convection equation (5.1) with the same initial condition, except that
now I = [0,5). The solution now has a discontinuity at x = 0 (or z = 5) and this discontinuity moves in

time with the characteristic speed 1. We compute the errors at 7' = 12.5, that is, after 2.5 periods in time.
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TABLE 5.2

Ezample 5.2, ut + ugy = Uzg, smooth solution.

Before postprocessing After postprocessing

U q for u, U q for u,

mesh | L error | order | L error | order | L* error | order | L*° error | order
pl
10 | 6.74E-03 — | 5.82E-03 — | 1.19E-03 — | 1.18E-03 —
20 | 1.82E-03 | 1.89 | 1.71E-03 | 1.77 | 1.34E-04 | 3.15 | 1.41E-04 | 3.07
40 | 4.68E-04 | 196 | 4.56E-04 | 1.91 | 1.56E-05 | 3.05 | 1.69E-05 | 3.06
80 | 1.19E-04 | 198 | 1.17E-04 | 1.96 | 1.46E-06 | 3.02 | 2.07E-06 | 3.03
160 | 3.00E-05 1.99 | 298E-05 | 1.98 | 2.32E-07 | 3.03 | 2.57E-07 | 3.01
320 | 7.52E-06 | 1.99 | 7.50E-06 | 1.99 | 2.87E-08 | 3.01 | 3.20E-08 | 3.01
p?
10 | 3.97E-04 — | 3.38E-04 — | 2.93E-05 — | 2.96E-05 —
20 | 5.01E-05 | 2.99 | 4.61E-05 | 2.87 | 543E-07 | 5.75 | 5.46E-07 | 5.76
40 | 6.25E-06 | 3.00 | 6.02E-06 | 2.94 | 1.04E-08 | 5.71 | 1.05E-08 | 5.70
80 | 7.83E-07 | 3.00 | 7.68E-07 | 2.97 | 2.19E-10 | 5.57 | 2.26E-10 | 5.54
160 | 9.78E-08 | 3.00 | 9.69E-08 | 2.99 | 5.31E-12 | 5.37 | 5.63E-12 | 5.33
p3
10 | 1.30E-05 — | 1.13E-05 — | 3.09E-06 — | 3.09E-06 —
20 | 8.23E-07 | 3.98 | 7.73E-07 | 3.86 | 1.32E-08 | 7.87 | 1.32E-08 | 7.87
40 | 5.14E-08 | 4.00 | 4.99E-08 | 3.95 | 5.31E-11 | 7.96 | 5.31E-11 | 7.96
pt
10 | 3.11E-07 — | 2.93E-07 — | 3.79E-07 — | 3.80E-07 —
20 | 9.89E-09 | 4.97 | 9.54E-09 | 4.94 | 4.19E-10 | 9.82 | 4.19E-10 | 9.82
30 | 1.30E-09 | 5.00 | 1.27E-09 | 498 | 7.11E-12 | 10.05 | 7.11E-12 | 10.05

The discontinuity at this time is located at x = 2.5. The errors shown in Table 5.3 are calculated within
the “smooth region” [0,1]U [4, 5], at distance 1.5 away from the discontinuity, namely ezcluding the interval
1<z <4,

The theory in this paper would only guarantee (k + 1)-th order accuracy for P*¥ elements after post-
processing since our estimates hold for Dy = [ only and the initial condition displays a discontinuity.
However, Table 5.3 shows that both the L? errors and the L™ errors are still at least (2k + 1)-th order
accurate for P* elements after post-processing. This indicates that it is reasonable to expect that a similar

result with a domain D€y ezcluding the discontinuity should hold, see Fig. 5.4.

In Fig. 5.3 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution
before and after post-processing for P2, with 10, 20, 40, 80 and 160 elements. We can clearly see that the

post-processed errors are less oscillatory and much smaller in magnitude away from the discontinuity.
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TABLE 5.3

Ezample 5.3, ut + uy = 0, discontinuous solution, errors in smooth regions

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L error | order | L? error ‘ order ‘ L™ error | order
pl
10 | 2.02E-02 — | 6.46E-02 — | 1.76E-02 — | 2.80E-02 —
20 | 4.37TE-03 | 2.21 | 1.21E-02 | 2.41 | 3.96E-03 | 2.15 | 1.18E-02 1.24
40 | 6.63E-04 | 2.72 | 1.89E-03 | 2.69 | 2.69E-04 | 3.88 | 6.77E-04 | 4.12
80 | 1.58E-04 | 2.07 | 5.24E-04 | 1.85 | 2.78E-05 | 3.27 | 4.31E-05 | 3.97
160 | 3.92E-05 | 2.01 | 1.36E-04 | 1.94 | 3.49E-06 | 3.00 | 5.31E-06 | 3.02
320 | 9.80E-06 | 2.00 | 3.47E-05 | 1.97 | 4.37E-07 | 3.00 | 6.63E-07 | 3.00
p?
10 | 4.53E-03 — | 1.08E-02 — | 3.74E-03 — | 1.15E-02 —
20 | 4.96E-04 | 3.19 | 1.98E-03 | 2.45 | 3.02E-04 | 3.63 | 1.07E-03 | 3.42
40 | 8.80E-06 | 5.82 | 2.51E-05 | 6.30 | 4.03E-06 | 6.23 | 2.74E-05 | 5.29
80 | 897E-07 | 3.29 | 2.91E-06 | 3.11 | 1.74E-09 | 11.18 | 1.32E-08 | 11.02
160 | 1.12E-07 | 3.00 | 3.64E-07 | 3.00 | 5.09E-11 | 5.09 | 8.75E-11 7.23
p3
10 | 2.87E-03 — | 1.24E-02 — | 7.76E-04 — | 1.81E-03 —
20 | 1.97E-04 | 3.87 | 1.03E-03 | 3.60 | 6.91E-06 | 6.81 | 2.92E-05 | 5.95
40 | 1.36E-06 | 7.18 | 7.21E-06 | 7.15 | 3.51E-08 | 7.62 | 1.88E-07 | 7.27
80 | 3.03E-09 | 881 | 1.01E-08 | 9.47 | 2.18E-11 | 10.65 | 6.89E-11 | 11.42
pt
10 | 1.93E-03 — | 6.32E-03 — | 1.36E-03 — | 2.91E-03 —
20 | 9.79E-05 | 4.30 | 5.42E-04 | 3.54 | 1.15E-07 | 13.53 | 8.37E-07 | 11.76
40 | 5.86E-07 | 7.39 | 4.70E-06 | 6.85 | 3.46E-11 | 11.70 | 2.11E-10 | 11.96

Example 5.4. A scalar nonlinear Burgers’ equation with continuous and discontinuous solutions on the
domain I = [0,27):

1 1
ue + <§u2> =0, inIx(0,T); u(z,0) = 3 +sin(z), =z€l; (5.3)

with periodic boundary conditions. The errors at 7' = 0.5, when the solution is still smooth, are given in
Table 5.4. It seems that in general, post-processed errors are still smaller, although the asymptotic orders
seem to show up later than for the linear case, as the mesh is refined. We remark that the theory in this
paper does not cover this nonlinear problem.

In Fig. 5.5, we plot the errors of the numerical solution before and after post-processing for P? and P3
with 20 elements. From Table 5.4 we can see that in both situations the errors after post-processing are
actually larger than the errors before post-processing. Note in Fig. 5.5 that near the middle region, the
oscillations in the errors are not “uniform”, apparently due to nonlinear effects, hence the post-processing
actually gives larger errors. Fortunately, for a larger number of elements the post-processing begins to be

effective and the errors after post-processing do become smaller, see Table 5.4 and the following Fig. 5.6.
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In Fig. 5.6 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution before
and after post-processing for P%, with 10, 20, 40, 80, 160 and 320 elements. We can clearly see that the
post-processed errors are less oscillatory and much smaller in magnitude, especially for a large number of
elements. However, notice that due to non-linear effects not all oscillations in the errors have been removed

by the post-processing, especially for a large number of elements.

TABLE 5.4

Ezample 5.4, Burgers’ equation with smooth solution.

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L™ error | order | L? error ‘ order ‘ L*> error | order
pl
10 | 1.95E-02 — | 8.87E-02 — | 1.37E-02 — | 3.99E-02 —
20 | 5.31E-03 1.88 | 2.77E-02 1.68 | 1.63E-03 3.07 | 6.47E-03 2.63
40 | 1.33E-03 2.00 | 7.55E-03 1.87 | 1.28E-04 3.67 | 5.55E-04 3.54
80 | 3.33E-04 1.99 | 1.95E-03 1.95 | 1.03E-05 3.63 | 4.17E-05 3.73
160 | 8.37E-05 1.99 | 4.99E-04 1.97 | 1.12E-06 3.20 | 4.21E-06 3.31
320 | 2.10E-05 2.00 | 1.26E-04 1.98 | 1.42E-07 2.98 | 5.69E-07 2.89
p2
10 | 3.46E-03 — | 1.93E-02 — | 1.12E-02 — | 3.37E-02 —
20 | 4.81E-04 2.85 | 3.57E-03 2.43 | 9.25E-04 3.59 | 3.47E-03 3.28
40 | 8.00E-05 2.59 | 6.22E-04 2.52 | 3.63E-05 4.67 | 1.58E-04 4.46
80 | 1.30E-05 2.62 | 1.20E-04 2.37 | 8.43E-07 5.43 | 3.93E-06 5.33
160 | 2.04E-06 2.67 | 1.98E-05 2.61 | 1.67E-08 5.66 | 8.51E-08 5.53
320 | 3.06E-07 2.73 | 3.02E-06 2.71 | 3.60E-10 5.53 | 1.85E-09 5.52
p3
10 | 4.33E-04 — | 2.24E-03 — | 1.12E-02 — | 3.35E-02 —
20 | 4.16E-05 3.38 | 2.00E-04 3.48 | 8.08E-04 3.80 | 3.03E-03 3.46
40 | 2.43E-06 4.10 | 1.74E-05 3.53 | 2.06E-05 5.30 | 9.42E-05 5.01
80 | 1.46E-07 4.06 | 1.04E-06 4.07 | 1.96E-07 6.72 | 1.01E-06 6.54
160 | 1.03E-08 3.82 | 6.72E-08 3.95 | 1.10E-09 7.47 | 5.94E-09 7.41
pi
10 | 1.75E-04 — | 8.25E-04 — | 1.15E-02 — | 3.36E-02 —
20 | 4.19E-06 5.39 | 2.45E-05 5.07 | 7.63E-04 3.91 | 2.82E-03 3.58
40 | 1.70E-07 4.62 | 1.04E-06 4.55 | 1.48E-05 5.69 | 6.82E-05 5.37
50 | 6.45E-08 4.36 | 4.40E-07 3.87 | 3.09E-06 7.03 | 1.52E-05 6.74

Next, we compute the solution at T" = 2, that is, after the shock has developed. We measure the errors
on the smooth region 0.57 away from the discontinuity and show the results in Table 5.5. The codes ran
stably only for P! and P?; hence only these two cases are shown.

In order to stabilize the algorithm in the presence of shocks, we apply a TVB (total variation bounded)
limiter with M = 3, see [7]. This limiter has no effect on the numerical solution at 7' = 0.5 when the solution

is still smooth, but allows the scheme to run stably for P? and P* after the shock develops. We again
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TABLE 5.5

Ezxample 5.4, Burgers’ equation with discontinuous solution.

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L error | order | L? error ‘ order ‘ L™ error | order
pl
10 | 8.70E-03 — | 3.56E-02 — | 6.79E-03 — | 1.99E-02 —
20 | 3.05E-04 | 4.83 | 1.47E-03 | 4.60 | 2.23E-04 | 4.93 | 8.61E-04 | 4.53
40 | 1.70E-05 | 4.16 | 8.14E-05 | 4.18 | 1.09E-05 | 4.36 | 2.25E-05 | 5.26
80 | 3.71E-06 | 2.20 | 2.07E-05 | 1.97 | 1.37E-06 | 2.99 | 2.86E-06 | 2.97
160 | 8.65E-07 | 2.10 | 4.67E-06 | 2.15 | 1.63E-07 | 3.07 | 3.43E-07 | 3.06
320 | 2.17E-07 | 2.00 | 1.19E-06 | 1.97 | 2.05E-08 | 3.00 | 4.31E-08 | 2.99
p?
10 | 6.26E-03 — | 3.29E-02 — | 1.57E-03 — | 7.05E-03 —
20 | 2.77TE-04 | 4.50 | 1.44E-03 | 4.52 | 5.47E-05 | 4.84 | 1.52E-04 | 5.54
40 | 2.03E-05 | 3.77 | 1.68E-04 | 3.10 | 6.88E-06 | 2.99 | 2.62E-05 | 2.53
80 | 2.30E-06 | 3.14 | 2.17E-05 | 2.95 | 8.39E-07 | 3.03 | 4.61E-06 | 2.51
160 | 4.23E-07 | 244 | 4.75E-06 | 2.19 | 1.16E-07 | 2.86 | 7.95E-07 | 2.54
320 | 6.12E-08 | 2.79 | 7.77E-07 | 2.61 | 1.41E-08 | 3.04 | 1.29E-07 | 2.62

measure the errors on the smooth region 0.57 away from the discontinuity and show the result in Table 5.6.

In Fig. 5.7 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution before
and after post-processing for P? with a TVB limiter, at t = 2, with 10, 20, 40, 80, 160 and 320 elements. We
can clearly see that the post-processed errors are less oscillatory and much smaller in magnitude, especially
for a large number of elements, away from the discontinuity. Again, notice that not all oscillations in the
errors have been removed by the post-processing, especially for a large number of elements, due to non-linear

effects.

Example 5.5. A linear system with a smooth solution in the domain I = [0, 27):

Wt =0 k0,1, ue,0) =sin@ g (5.4)
Vet Uy =0 v(z,0) =0
with periodic boundary conditions. The errors are computed at 7' = 12.5 which is about 2 periods in time.

In Table 5.7, we show the results for this problem. The errors are the combined ones of 4 and v. We can
clearly see that both L? and L™ errors for P* elements are (k 4+ 1)-th order before post-processing and at
least (2k + 1)-th order after post-processing. In fact, the errors are very similar to the scalar case in Example
5.1. This is consistent with our theoretical results.

Notice that this example and the next one with discontinuous solution for linear systems indicate that
the method is very suitable for long time simulation of linear systems as the post-processing needs to be
performed only at the final time. Examples include aeroacoustic problems when linear Euler equations must
be solved for a long time to propagate the pressure waves.

Example 5.6. The same linear system (5.4) with the same initial condition, except that now 0 < z < 5

and the boundary condition is 5-periodic. The solution now has a discontinuity at z = 0 (or = 5) and this

21



TABLE 5.6
Ezample 5.4, Burgers’ equation with discontinuous solution. TVB limiters.

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L error | order | L? error ‘ order ‘ L™ error | order
pl
10 | 1.26E-03 — | 4.44E-03 — | 1.02E-03 — | 2.28E-03 —
20 | 1.16E-04 | 3.44 | 4.38E-04 | 3.34 | 1.01E-04 | 3.33 | 1.94E-04 | 3.55
40 | 1.72E-05 | 2.76 | 8.33E-05 | 2.40 | 1.09E-05 | 3.22 | 2.26E-05 | 3.11
80 | 3.72E-06 | 2.20 | 2.08E-05 | 2.00 | 1.37E-06 | 2.99 | 2.87E-06 | 2.98
160 | 8.73E-07 | 2.09 | 4.75E-06 | 2.13 | 1.63E-07 | 3.07 | 3.44E-07 | 3.06
320 | 2.17E-07 | 2.01 | 1.19E-06 | 2.00 | 2.05E-08 | 3.00 | 4.32E-08 | 2.99
p?
10 | 1.03E-02 — | 5.83E-02 — | 1.99E-03 — | 7.66E-03 —
20 | 4.22E-04 | 4.60 | 3.36E-03 | 4.12 | 5.32E-05 | 5.22 | 1.50E-04 | 5.68
40 | 2.23E-05 | 4.24 | 1.99E-04 | 4.08 | 6.87E-06 | 2.95 | 2.53E-05 | 2.53
80 | 2.29E-06 | 3.28 | 2.16E-05 | 3.20 | 8.39E-07 | 3.03 | 4.61E-06 | 2.50
160 | 4.21E-07 | 244 | 4.72E-06 | 2.19 | 1.16E-07 | 2.86 | 7.95E-07 | 2.54
320 | 6.10E-08 | 2.79 | 7.75E-07 | 2.61 | 1.41E-08 | 3.04 | 1.29E-07 | 2.62
p3
10 | 9.98E-04 — | 6.64E-03 — | 3.45E-03 — | 1.35E-02 —
20 | 147E-04 | 2.76 | 1.38E-03 | 2.20 | 9.35E-06 | 8.52 | 5.18E-05 | 8.03
40 | 4.92E-07 | 8.22 | 543E-06 | 7.99 | 2.92E-08 | 8.32 | 2.08E-07 | 7.96
80 | 8.58E-10 | 9.16 | 1.43E-08 | 8.57 | 3.71E-10 | 6.30 | 8.73E-10 | 7.90
pt
10 | 3.86E-01 — | 9.90E-01 — | 2.28E-01 — | 3.78E-01 —
20 | 1.08E-01 1.84 | 2.16E-01 | 2.20 | 5.28E-02 | 2.11 | 1.34E-01 1.50
40 | 1.89E-03 | 5.83 | 2.25E-02 | 3.26 | 3.88E-04 | 7.09 | 3.97E-03 | 5.07
80 | 8.08E-08 | 14.52 | 6.11E-07 | 15.17 | 1.46E-08 | 14.70 | 7.42E-08 | 15.71

discontinuity moves in time with the characteristic speeds 1. We compute the errors at ¢ = 12.5, after 2.5
periods in time. The two discontinuities at this time are both located at = 2.5. The errors shown in Table
5.8 are calculated within the “smooth region” that lies a distance 1.5 away from the discontinuities, namely
excluding the interval 1 < z < 4.

The theory in this paper would only guarantee (k + 1)-th order accuracy for P* elements after post-
processing, since when we take D); = I, the initial condition has a discontinuity in this set. However, Table
5.8 shows that both the L? errors and the L errors are still at least (2k + 1)-th order accurate for P*
elements after post-processing.

In fact, the behavior of the errors is very similar to that observed in the scalar case in Example 5.3. This

is not really surprising since our linear system is equivalent to the following two decoupled scalar equations:

in I x (0,T), ) ‘ zel
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TABLE 5.7

Ezxample 5.5, linear system with smooth solution

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L error | order | L? error ‘ order ‘ L™ error | order
pl
10 | 2.33E-02 — | 5.20E-02 — | 2.13E-02 — | 4.16E-02 —
20 | 3.98E-03 | 2.55 | 8.55E-03 | 2.60 | 2.72E-03 | 2.97 | 5.36E-03 | 2.96
40 | 8.20E-04 | 2.28 | 1.89E-03 | 2.18 | 3.39E-04 | 3.00 | 6.74E-04 | 2.99
80 | 1.92E-04 | 2.09 | 4.77TE-04 | 1.98 | 4.23E-05 | 3.00 | 8.43E-05 | 3.00
160 | 4.72E-05 | 2.03 | 1.20E-04 | 2.00 | 5.28E-06 | 3.00 | 1.05E-05 | 3.00
320 | 1.17E-05 | 2.01 | 2.99E-05 | 2.00 | 6.59E-07 | 3.00 | 1.31E-06 | 3.00
p?
10 | 6.10E-04 — | 1.67E-03 — | 1.78E-04 — | 3.53E-04 —
20 | 7.57E-05 | 3.01 | 2.08E-04 | 3.00 | 4.22E-06 | 5.40 | 8.42E-06 | 5.39
40 | 9.46E-06 | 3.00 | 2.60E-05 | 3.00 | 1.09E-07 | 5.28 | 2.17E-07 | 5.28
80 | 1.18E-06 | 3.00 | 3.24E-06 | 3.00 | 3.11E-09 | 5.13 | 6.20E-09 | 5.13
160 | 1.48E-07 | 3.00 | 4.06E-07 | 3.00 | 8.95E-11 | 5.12 | 1.77E-10 | 5.13
p3
10 | 2.33E-05 — | 5.73E-05 — | 1.16E-05 — | 2.30E-05 —
20 | 1.46E-06 | 4.00 | 3.61E-06 | 3.99 | 5.00E-08 | 7.85 | 9.98E-08 | 7.85
40 | 9.13E-08 | 4.00 | 2.27E-07 | 3.99 | 2.13E-10 | 7.88 | 4.25E-10 | 7.88
50 | 3.74E-08 | 4.00 | 9.29E-08 | 4.01 | 3.94E-11 | 7.56 | 7.84E-11 7.57
pt
10 | 7.24E-07 — | 1.37E-06 — | 1.40E-06 — | 2.79E-06 —
20 | 2.27E-08 | 5.00 | 4.33E-08 | 4.99 | 1.56E-09 | 9.82 | 3.11E-09 | 9.81
30 | 2.99E-09 | 5.00 | 5.72E-09 | 4.99 | 3.06E-11 | 9.69 | 6.16E-11 | 9.67

As a consequence, the domain of dependence D2y does not include the discontinuity of the initial condition;
see Fig. 5.8 (top).

On the other hand, it is interesting to point out that this doubling of the order of accuracy does not
take place for the problem,

Ut — Uy =V . u(z,0) = sin(z)
in I x(0,7), rxel, (5.5)
VU = —u v(z,0) =0

with periodic boundary conditions, since now the two scalar equations associated with the diagonalization of
the system are coupled through zero-order terms; as a consequence, the domain of dependence Dy always
includes the discontinuity of the initial condition; see Fig 5.8 (bottom). This is the example treated in
the early work of Majda and Osher and [18] and Majda, McDonough and Osher [17]. Due to this lack of
regularity of the initial condition on D)y, post-processing with a kernel of support of order A does not yield
any significant improvement; a kernel of support of order almost one is required, as predicted by our main

theorem; see also Mock and Lax [19].
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TABLE 5.8

Ezxample 5.6, linear system with discontinuous solution

Before postprocessing After postprocessing

mesh | L? error ‘ order ‘ L error | order | L? error ‘ order ‘ L™ error | order
pl
10 | 1.49E-02 — | 4.00E-02 — | 1.29E-02 — | 4.27E-02 —
20 | 3.19E-03 | 2.22 | 9.35E-03 | 2.10 | 2.79E-03 | 2.21 | 7.69E-03 | 2.47
40 | 4.76E-04 | 2.74 | 1.37TE-03 | 2.78 | 1.85E-04 | 3.91 | 4.82E-04 | 3.99
80 | 1.13E-04 | 2.08 | 3.04E-04 | 2.17 | 1.99E-05 | 3.22 | 4.28E-05 | 3.49
160 | 2.78E-05 | 2.02 | 7.59E-05 | 2.00 | 2.48E-06 | 3.00 | 5.31E-06 | 3.01
320 | 6.94E-06 | 2.00 | 1.90E-05 | 2.00 | 3.09E-07 | 3.00 | 6.63E-07 | 3.00
p?
10 | 3.41E-03 — | 6.93E-03 — | 2.65E-03 — | 9.29E-03 —
20 | 3.58E-04 | 3.25 | 1.30E-03 | 2.42 | 2.22E-04 | 3.58 | 6.40E-04 | 3.86
40 | 6.30E-06 | 5.83 | 2.42E-05 | 5.74 | 2.85E-06 | 6.28 | 1.39E-05 | 5.52
80 | 6.33E-07 | 3.32 | 1.64E-06 | 3.88 | 1.23E-09 | 11.17 | 7.52E-09 | 10.86
160 | 7.91E-08 | 3.00 | 2.05E-07 | 3.00 | 3.34E-11 | 5.20 | 5.54E-11 7.08
p3
10 | 2.03E-03 — | 6.43E-03 — | 5.35E-04 — | 1.77E-03 —
20 | 1.40E-04 | 3.86 | 5.41E-04 | 3.57 | 4.92E-06 | 6.76 | 2.27E-05 | 6.28
40 | 9.66E-07 | 7.18 | 3.64E-06 | 7.21 | 2.50E-08 | 7.62 | 9.60E-08 | 7.89
80 | 2.14E-09 | 8.82 | 6.00E-09 | 9.25 | 1.34E-11 | 10.87 | 4.89E-11 | 10.94
pt
10 | 1.38E-03 — | 3.26E-03 — | 9.61E-04 — | 2.90E-03 —
20 | 6.92E-05 | 4.32 | 2.72E-04 | 3.58 | 8.09E-08 | 13.54 | 6.31E-07 | 12.17
40 | 4.14E-07 | 7.39 | 2.36E-06 | 6.85 | 2.42E-11 | 11.71 | 1.03E-10 | 12.58

6. Extensions and concluding remarks. In this paper, we have shown how to enhance the approxi-
mation given by a finite element method for linear hyperbolic equations by applying a simple post-processing
at the very end of the computations. Our theoretical results can be easily extended to the case in which the
matrices A;,j = 0,...,d, are very smooth functions of (z,t). To do that, it is enough to mimic the induction

argument presented by Bramble and Schatz in [4].

The role of negative-order error estimates is crucial since it is the analytical tool that captures the
ocillatory nature of the error. For these negative-order norms of the error, upper bounds were obtained
which depend on a global norm of the initial data. Our numerical results suggest, however, that they should
depend only on a local norm of the initial data. In fact, a result of this type was obtained in 1998 for finite
difference schemes by Engquist and Sjégreen [10]. To obtain such a result for, say, the discontinuous Galerkin

method is an challenging open problem.

Finally, let us end by pointing out that our numerical results seem to indicate that the post-processing
has a positive impact on the quality of the approximate solution even if the problem is non-linear. A

theoretical analysis of this case is yet another important open problem.
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F1G. 5.3. The errors in absolute value and in logarithmic scale, for P2 with N=10, 20, /0, 80 and 160 elements. Before
post-processing (left) and after post-processing (right).

Fic. 5.4. Sketch of the domain of smoothness Qo of the exact solution, the domain 1 and its corresponding domain of
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Fic. 5.5. The errors before and after post-processing for the smooth solution of Burgers equation and 20 elements: P2

(left) and P3 (right).
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Burgzers’s equation, t=0.5 (smooth),
P*, before post-processing

Burgzers’s equation, t=0.5 (smooth),
P, after post-processing
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FIG. 5.6. The errors in absolute value and in logarithmic scale, for P? with N=20, 40, 80, 160 and 320 elements. Smooth
solution of Burgers equation. Before post-processing (left) and after post-processing (right).

Burgzers’s equation, t=2 (non-smooth), Burgzers’s equation, t=2 (non-smooth),
P<, before post-processing P?, after post-processing
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F1G. 5.7. The errors in absolute value and in logarithmic scale, for P2 with N=10, 20, 40, 80, 160 and 320 elements.

Discontinuous solution of Burgers equation. Before post-processing (left) and after post-processing (right).
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Fi1G. 5.8. The domain of smoothness of u(T), Qo, the domain Q1 DD Qo and its corresponding domain of dependence
DQ for the system (5.4) (top) and the system (5.5) (bottom). Note the discontinuity curves t = |z|.
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